

5.1





# Ansoft HFSS Design Environment

- The following features of the Ansoft HFSS Design Environment are used to create this passive device model
  - 3D Solid Modeling
    - A Primitives: Cylinders, Boxes
    - M Boolean Operations: Unite, Subtract
  - Boundaries/Excitations
    - Ports: Wave Ports
  - Analysis
    - M Sweep: Fast Frequency
  - Results
    - Cartesian plotting
  - ▲ Field Overlays:
    - 3D Far Field Plots



# Getting Started

## Launching Ansoft HFSS

1. To access Ansoft HFSS, click the Microsoft **Start** button, select **Programs**, and select the **Ansoft**, **HFSS 10** program group. Click **HFSS 10**.

## Setting Tool Options

- To set the tool options:
  - Note: In order to follow the steps outlined in this example, verify that the following tool options are set :
  - 1. Select the menu item *Tools > Options > HFSS Options*
  - 2. HFSS Options Window:
    - 1. Click the General tab
      - ▲ Use Wizards for data entry when creating new boundaries: Checked
      - ▲ Duplicate boundaries with geometry: ☑ Checked
    - 2. Click the OK button
  - 3. Select the menu item *Tools > Options > 3D Modeler Options.*
  - 4. 3D Modeler Options Window:
    - 1. Click the **Operation** tab
      - ▲ Automatically cover closed polylines: ☑ Checked
    - 2. Click the Drawing tab
      - ▲ Edit property of new primitives: ☑ Checked
    - 3. Click the OK button



# Opening a New Project

## To open a new project:

- In an Ansoft HFSS window, click the □ On the Standard toolbar, or select the menu item *File > New*.
- 2. From the *Project* menu, select *Insert HFSS Design*.



## Set Solution Type

M To set the solution type:

- 1. Select the menu item *HFSS > Solution Type*
- 2. Solution Type Window:
  - 1. Choose Driven Terminal
  - 2. Click the **OK** button

| Solution Type   |
|-----------------|
|                 |
| 🔿 Driven Modal  |
| Driven Terminal |
| 🔿 Eigenmode     |
|                 |
| OK Cancel       |



## Set Model Units

## M To set the units:

- 1. Select the menu item *3D Modeler > Units*
- 2. Set Model Units:
  - 1. Select Units: in (inches)
  - 2. Click the **OK** button

## Set Default Material

Calast Definitio

- M To set the default material:
  - 1. Using the 3D Modeler Materials toolbar, choose Select
  - 2. Select Definition Window:
    - 1. Type copper in the Search by Name field
    - 2. Click the OK button

| Search by Name               | <ul> <li>Search Criteria -</li> <li></li></ul> | c            | by Property Is           | raries 🔽 Sho<br>/s] Materials | w definitions in Project |
|------------------------------|------------------------------------------------|--------------|--------------------------|-------------------------------|--------------------------|
| Search                       | Relative Permit                                | tivity       | <u></u>                  |                               |                          |
| /Name                        | Location                                       | Origin       | Relative<br>Permittivity | Relative<br>Permeability      | Bulk  Conductivity       |
| cast_iron                    | SysLibrary                                     | Materials    | 1                        | 60                            | 1500000Siemens/m         |
| chromium                     | SysLibrary                                     | Materials    | 1                        | 1                             | 7600000Siemens/m         |
| cobalt                       | SysLibrary                                     | Materials    | 1                        | 250                           | 10000000Siemens/m        |
| copper                       | Project                                        | Materials    | 1                        | 0.999991                      | 58000000Siemens/m        |
| copper                       | SysLibrary                                     | Materials    | 1                        | 0.999991                      | 58000000Siemens/m        |
| coming_glass                 | SysLibrary                                     | Materials    | 5.75                     | 1                             | 0                        |
| cyanate_ester                | SysLibrary                                     | Materials    | 3.8                      | 1                             | 0                        |
| diamond                      | SysLibrary                                     | Materials    | 16.5                     | 1                             | 0                        |
| diamond_hi_pres              | SysLibrary                                     | Materials    | 5.7                      | 1                             | 0                        |
| diamond_pl_cvd               | SysLibrary                                     | Materials    | 3.5                      | 1                             | 0                        |
| Dupont Type 100 HN Film (tm) | SysLibrary                                     | Materials    | 3.5                      | 1                             | 0                        |
|                              | 10                                             |              |                          | L.                            |                          |
| /iew/Edit Materials Add      | Material                                       | Clone Materi | al(s)                    | Remove Material(s)            | Export to Library        |

| Set Model Units        | ×      |
|------------------------|--------|
| Select units: in       | •      |
| 🔲 Rescale to new units |        |
| ОК                     | Cancel |

Model

k

🗠 🗸 🖓

vacuum Select...





## Creating Annular Rings

- Creating a ring is accomplished by creating a cylinder that represents the outer radius and a cylinder that represents the inner radius. By performing a Boolean subtraction, the resulting geometry is a ring.
- For this model, two sets of rings are necessary. Instead of manually creating both rings, we will create one ring, copy it, and edit the dimensions of the copy.
- Create Ring 1
  - 1. Select the menu item *Draw > Cylinder*
  - 2. Using the coordinate entry fields, enter the cylinder position
    - X: 0.0, Y: 0.0, Z: 0.0, Press the Enter key
  - 3. Using the coordinate entry fields, enter the radius:
    - M dX: 0.31, dY: 0.0, dZ: 0.0, Press the Enter key
  - 4. Using the coordinate entry fields, enter the height:
    - M dX: 0.0, dY: 0.0, dZ: 5.0, Press the Enter key
- To set the name:
  - 1. Select the **Attribute** tab from the **Properties** window.
  - 2. For the Value of Name type: ring\_inner
  - 3. Click the OK button
- **•** To fit the view:
  - Select the menu item View > Fit All > Active View. Or press the CTRL+D key





## **Creating Annular Rings (Continued)**

## Create Ring 1 (Continued)

- 1. Select the menu item *Draw > Cylinder*
- Using the coordinate entry fields, enter the cylinder position
  - X: 0.0, Y: 0.0, Z: 0.0, Press the Enter key
- Using the coordinate entry fields, enter the radius: 3.
  - dX: 0.37, dY: 0.0, dZ: 0.0, Press the Enter key
- Using the coordinate entry fields, enter the height: 4.
  - dX: 0.0, dY: 0.0, dZ: 5.0, Press the Enter key

### To set the name:

- 1. Select the **Attribute** tab from the **Properties** window.
- 2. For the Value of Name type: ring 1
- 3. Click the OK button
- To select objects to be subtracted:
  - 1. Select the menu item *Edit > Select > By Name*
  - 2. Select Object Dialog,
    - 1. Select the objects named: ring\_1, ring\_inner
    - 2. Click the OK button

#### To subtract:

- 1. Select the menu item 3D Modeler > Boolean > Subtract
- Subtract Window 2.
  - Blank Parts: ring 1
  - M Tool Parts: ring inner
  - Clone tool objects before subtract: Unchecked
  - Click the OK button



5.1





## Creating Annular Rings (Continued)

## Create Ring 2

- 1. Select the menu item *Edit > Select > By Name*
- 2. Select Object Dialog,
  - 1. Select the objects named: ring\_1
  - 2. Click the OK button
- 3. Select the menu item *Edit > Copy*
- 4. Select the menu item *Edit > Paste*
- Change the dimensions of Ring 2
  - To change the dimensions of ring\_2, expand the model tree as shown below. It should be noted that order of the editing is important. If you make the inner radius > then the outer radius, a invalid object will result and it will be removed from the model.
  - 2. Using the mouse, double click the left mouse button on the CreateCylinder command for ring\_2
  - 3. Properties dialog
    - 1. Change the radius to: 0.5 in
    - 2. Click the OK button
  - 4. Using the mouse, double click the left mouse button on the **CreateCylinder** command for **ring\_inner1**
  - 5. Properties dialog
    - 1. Change the radius to: 0.435 in
    - 2. Click the OK button







## Create Arm\_1

#### Monormatic To create Arm\_1

- 1. Select the menu item *Draw > Box*
- 2. Using the coordinate entry fields, enter the box position
  - X: -0.1, Y: -0.31, Z: 5.0, Press the Enter key
- 3. Using the coordinate entry fields, enter the opposite corner of the base rectangle:
  - M dX: 0.2, dY: -4.69, dZ: -0.065, Press the Enter key

#### M To set the name:

- 1. Select the Attribute tab from the Properties window.
- 2. For the Value of Name type: Arm\_1
- 3. Click the OK button
- M To fit the view:
  - 1. Select the menu item *View > Fit All > Active View*.

## **Group Conductors**

#### • To group the conductors:

- 1. Select the menu item *Edit > Select All Visible*. Or press the CTRL+A key
- 2. Select the menu item, 3D Modeler > Boolean > Unite





## Create the Center pin

#### To create the center pin

- 1. Select the menu item *Draw > Cylinder*
- 2. Using the coordinate entry fields, enter the cylinder position
  - ▲ X: 0.0, Y: 0.0, Z: 0.0, Press the Enter key
- 3. Using the coordinate entry fields, enter the radius:
  - M dX: 0.1, dY: 0.0, dZ: 0.0, Press the Enter key
- 4. Using the coordinate entry fields, enter the height:
  - M dX: 0.0, dY: 0.0, dZ: 5.1, Press the Enter key

#### To set the name:

- 1. Select the Attribute tab from the Properties window.
- 2. For the Value of Name type: center\_pin
- 3. Click the OK button





## Create Arm\_2

## Monormatic To create Arm\_2

- 1. Select the menu item *Draw > Box*
- 2. Using the coordinate entry fields, enter the box position
  - X: -0.1, Y: 0.0, Z: 5.1, Press the Enter key
- 3. Using the coordinate entry fields, enter the opposite corner of the base rectangle:
  - M dX: 0.2, dY: 5.0, dZ: -0.065, Press the Enter key

#### To set the name:

- 1. Select the **Attribute** tab from the **Properties** window.
- 2. For the Value of Name type: Arm\_2
- 3. Click the OK button

## M To fit the view:

1. Select the menu item *View > Fit All > Active View*.





## Create the Grounding Pin

#### M To create the grounding pin

- 1. Select the menu item *Draw > Cylinder*
- 2. Using the coordinate entry fields, enter the cylinder position
  - X: 0.0, Y: 1.0, Z: 0.0, Press the Enter key
- 3. Using the coordinate entry fields, enter the radius:
  - M dX: 0.0625, dY: 0.0, dZ: 0.0, Press the Enter key
- 4. Using the coordinate entry fields, enter the height:
  - M dX: 0.0, dY: 0.0, dZ: 5.1, Press the Enter key

#### M To set the name:

- 1. Select the **Attribute** tab from the **Properties** window.
- 2. For the Value of Name type: pin
- 3. Click the OK button

## Group Conductors

#### To group the conductors:

- 1. Select the menu item *Edit > Select > By Name*
- 2. Select Object Dialog,
  - 1. Select the objects named: Arm\_2, center\_pin, pin
    - Note: Use the Ctrl + Left mouse button to select multiple objects
  - 2. Click the **OK** button
- 3. Select the menu item, *3D Modeler > Boolean > Unite*





# Create the Wave port

- To create a circle that represents the port:
  - 1. Select the menu item *Draw > Circle*
  - 2. Using the coordinate entry fields, enter the center position
    - ▲ X: 0.0, Y: 0.0, Z: 0.0, Press the Enter key
  - 3. Using the coordinate entry fields, enter the radius of the circle:
    - M dX: 0.31, dY: 0.0, dZ: 0.0, Press the Enter key

## To set the name:

- 1. Select the Attribute tab from the Properties window.
- 2. For the Value of Name type: p1
- 3. Click the OK button





🖄 vacuum

## Set Default Material

### To set the default material:

▲ Using the 3D Modeler Materials toolbar, choose vacuum

## Create Air

#### M To create Air

- 1. Select the menu item *Draw > Box*
- 2. Using the coordinate entry fields, enter the box position
  - ▲ X: -5.0, Y: -10.0, Z: 0.0, Press the Enter key
- 3. Using the coordinate entry fields, enter the opposite corner of the base rectangle:
  - M dX: 10.0, dY: 20.0, dZ: 12.0, Press the Enter key

### M To set the name:

- 1. Select the **Attribute** tab from the **Properties** window.
- 2. For the Value of Name type: Air
- 3. Click the OK button

### M To fit the view:

1. Select the menu item *View > Fit All > Active View*.

## Create Radiation Boundary

- To create a radiation boundary
  - 1. Select the menu item Edit > Select > By Name
  - 2. Select Object Dialog,
    - 1. Select the objects named: Air
    - 2. Click the OK button
  - 3. Select the menu item *HFSS > Boundaries >Assign> Radiation*
  - 4. Radiation Boundary window
    - 1. Name: Rad1
    - 2. Click the **OK** button



5.1

**-** |

Model



## Create Wave Port Excitation 1 (Continued)

### To select the object p1:

- 1. Select the menu item *Edit > Select > By Name*
- 2. Select Object Dialog,
  - 1. Select the objects named: p1
  - 2. Click the OK button

#### To assign wave port excitation

- 1. Select the menu item *HFSS > Excitations > Assign > Wave Port*
- 2. Wave Port : General
  - 1. Name: **p1**,
  - 2. Click the Next button
- 3. Wave Port : Terminals
  - 1. Number of Terminals: 1,
  - 2. For T1, click the Undefined column and select New Line
  - 3. Using the coordinate entry fields, enter the vector position
    - **X: 0.31, Y: 0.0, Z: 0.0,** Press the **Enter** key
  - 4. Using the coordinate entry fields, enter the vertex
    - M dX: -0.21, dY: 0.0, dZ: 0.0, Press the Enter key
  - 5. Click the **Next** button
- 4. Wave Port : Differential Pairs
  - 1. Click the **Next** button
- 5. Wave Port : Post Processing
  - 1. Reference Impedance: 50
- 6. Click the Finish button





## Create Infinite Ground Plane

### To create an Infinite ground

- 1. Select the menu item *Edit > Select > Faces*
- 2. Graphically select the face of the Air object at Z=0
- 3. Select the menu item *HFSS > Boundaries > Assign> Finite Conductivity*
- 4. Finite Conductivity Boundary window
  - 1. Name: gnd\_plane
  - 2. Use Material: 🗹 Checked
  - 3. Click the vacuum button
  - 4. Select Definition Window:
    - Type copper in the Search by Name field
    - 2. Click the OK button
  - 5. Infinite Ground Plane: ☑ **Checked**
  - 6. Click the OK button

## Create a Radiation Setup

- To define the radiation setup
  - Select the menu item HFSS > Radiation > Insert Far Field Setup > Infinite Sphere
  - 2. Far Field Radiation Sphere Setup dialog
    - 1. Infinite Sphere Tab
      - 1. Name: ff\_2d
      - 2. Phi: (Start: 0, Stop: 90, Step Size: 90)
      - 3. Theta: (Start: -180, Stop: 180, Step Size: 2)
    - 2. Click the OK button

| Ansoft High Frequency Structure Simulator v10 User' | s Guide |
|-----------------------------------------------------|---------|
|-----------------------------------------------------|---------|

| Finite Conductivity Boundary     |
|----------------------------------|
| General Defaults                 |
| Name: gnd_plane                  |
| Parameters                       |
| Conductivity: 58000000 Siemens/m |
| Permeability: 1                  |
| Use Material: copper             |
| Infinite Ground Plane            |
| Use Defaults                     |
| OK Cancel                        |

5.1



Analysis Setup

## Creating an Analysis Setup

- To create an analysis setup:
  - 1. Select the menu item *HFSS > Analysis Setup > Add Solution Setup*
  - 2. Solution Setup Window:
    - 1. Click the **General** tab:
      - Solution Frequency: 0.55 GHz
      - Maximum Number of Passes: 10
      - Maximum Delta S per Pass: 0.02
    - 2. Click the **OK** button

# Adding a Frequency Sweep

- M To add a frequency sweep:
  - 1. Select the menu item *HFSS > Analysis Setup > Add Sweep* 
    - 1. Select Solution Setup: Setup1
    - 2. Click the **OK** button
  - 2. Edit Sweep Window:
    - 1. Sweep Type: Fast
    - 2. Frequency Setup Type: Linear Count
      - Start: 0.35GHz
      - M Stop: 0.75GHz
      - M Count: 401
      - ▲ Save Fields: ☑ Checked
    - 3. Click the OK button



# **Save Project**

- To save the project:
  - 1. In an Ansoft HFSS window, select the menu item *File > Save As*.
  - 2. From the Save As window, type the Filename: hfss\_uhf\_probe
  - 3. Click the Save button
- Analyze

## Model Validation

- To validate the model:
  - 1. Select the menu item *HFSS > Validation Check*
  - 2. Click the **Close** button
    - Note: To view any errors or warning messages, use the Message Manager.

## Analyze

- To start the solution process:
  - 1. Select the menu item *HFSS > Analyze All*

| Setup1: Solving Ports on Local Machine - |  |
|------------------------------------------|--|
|                                          |  |
| Adapting p1, Pass 9                      |  |
|                                          |  |



5.1

## Solution Data

#### M To view the Solution Data:

- 1. Select the menu item *HFSS > Results > Solution Data* 
  - M To view the Profile:
    - 1. Click the **Profile** Tab.
  - M To view the Convergence:
    - 1. Click the **Convergence** Tab
    - Note: The default view is for convergence is Table. Select the Plot radio button to view a graphical representations of the convergence data.
  - M To view the Matrix Data:
    - 1. Click the Matrix Data Tab
    - Note: To view a real-time update of the Matrix Data, set the Simulation to Setup1, Last Adaptive
- 2. Click the **Close** button

| Simulation:  Setup1                                 | <u> </u>       |                     | 1.       |                  |
|-----------------------------------------------------|----------------|---------------------|----------|------------------|
| Profile Convergence Matrix Data                     |                |                     |          |                  |
| Number of Passes                                    | 26 Apr 2006    | An cont Corporation | 13:22:61 | ₩<br>¥- <b>○</b> |
| Maximum 10                                          |                |                     | Max M    | sg. Dell         |
| Minimum 1                                           | 2.60 E-00 1    |                     | Tame     | Y' <u>+</u>      |
| Max Mag. Delta S<br>Target 0.02<br>Current 0.015273 | 2.00 5-00 1    |                     |          |                  |
| View: 🔿 Table 🔎 Plot                                | S 1.60 E-00 1  |                     |          |                  |
| X : Pass Number 💽<br>Y : Max Mag. Delta S           | E 1.00 E-00 1  |                     |          |                  |
| CONVERGED<br>Consecutive Passes                     | 6.00 E-002     |                     |          |                  |
| Current 1                                           | 0.00 E+000     |                     |          |                  |
|                                                     | XY: 12.915-001 | Pass Number         |          |                  |



# Create Reports

## Create Terminal S-Parameter Plot - Magnitude

## M To create a report:

- 1. Select the menu item *HFSS > Results > Create Report*
- 2. Create Report Window:
  - 1. Report Type: Terminal S Parameters
  - 2. Display Type: Rectangular
  - 3. Click the **OK** button
- 3. Traces Window:
  - 1. Solution: Setup1: Sweep1
  - 2. Domain: Sweep
  - 3. Click the Y tab
    - 1. Category: Terminal S Parameter
    - 2. Quantity: St(p1,p1),
    - 3. Function: **dB**
    - 4. Click the Add Trace button
  - 4. Click the **Done** button





# Far Field Overlays

## Create Far Field Overlay

- To create a 2D polar far field plot :
  - 1. Select the menu item *HFSS > Results > Create Report*
  - 2. Create Report Window:
    - 1. Report Type: Far Fields
    - 2. Display Type: Radiation Pattern
    - 3. Click the OK button
  - 3. Traces Window:
    - 1. Solution: Setup1: LastAdaptive
    - 2. Geometry: ff\_2d
    - 3. In the **Sweeps** tab, select **Phi** under the **Name** column, and on the drop list, select **Theta**. This changes the primary sweep to Theta.
    - 4. In the Mag tab
      - 1. Category: Gain
      - 2. Quantity: GainTotal
      - 3. Function: dB
      - 4. Click the Add Trace button
    - 5. Click the **Done** button



# 射频和天线设计培训课程推荐

易迪拓培训(www.edatop.com)由数名来自于研发第一线的资深工程师发起成立,致力并专注于微 波、射频、天线设计研发人才的培养;我们于 2006 年整合合并微波 EDA 网(www.mweda.com),现 已发展成为国内最大的微波射频和天线设计人才培养基地,成功推出多套微波射频以及天线设计经典 培训课程和 ADS、HFSS 等专业软件使用培训课程,广受客户好评;并先后与人民邮电出版社、电子 工业出版社合作出版了多本专业图书,帮助数万名工程师提升了专业技术能力。客户遍布中兴通讯、 研通高频、埃威航电、国人通信等多家国内知名公司,以及台湾工业技术研究院、永业科技、全一电 子等多家台湾地区企业。

易迪拓培训课程列表: http://www.edatop.com/peixun/rfe/129.html



#### 射频工程师养成培训课程套装

该套装精选了射频专业基础培训课程、射频仿真设计培训课程和射频电 路测量培训课程三个类别共 30 门视频培训课程和 3 本图书教材; 旨在 引领学员全面学习一个射频工程师需要熟悉、理解和掌握的专业知识和 研发设计能力。通过套装的学习,能够让学员完全达到和胜任一个合格 的射频工程师的要求…

课程网址: http://www.edatop.com/peixun/rfe/110.html

#### ADS 学习培训课程套装

该套装是迄今国内最全面、最权威的 ADS 培训教程,共包含 10 门 ADS 学习培训课程。课程是由具有多年 ADS 使用经验的微波射频与通信系 统设计领域资深专家讲解,并多结合设计实例,由浅入深、详细而又 全面地讲解了 ADS 在微波射频电路设计、通信系统设计和电磁仿真设 计方面的内容。能让您在最短的时间内学会使用 ADS,迅速提升个人技 术能力,把 ADS 真正应用到实际研发工作中去,成为 ADS 设计专家...



课程网址: http://www.edatop.com/peixun/ads/13.html



### HFSS 学习培训课程套装

该套课程套装包含了本站全部 HFSS 培训课程,是迄今国内最全面、最 专业的 HFSS 培训教程套装,可以帮助您从零开始,全面深入学习 HFSS 的各项功能和在多个方面的工程应用。购买套装,更可超值赠送 3 个月 免费学习答疑,随时解答您学习过程中遇到的棘手问题,让您的 HFSS 学习更加轻松顺畅…

课程网址: http://www.edatop.com/peixun/hfss/11.html

### CST 学习培训课程套装

该培训套装由易迪拓培训联合微波 EDA 网共同推出,是最全面、系统、 专业的 CST 微波工作室培训课程套装,所有课程都由经验丰富的专家授 课,视频教学,可以帮助您从零开始,全面系统地学习 CST 微波工作的 各项功能及其在微波射频、天线设计等领域的设计应用。且购买该套装, 还可超值赠送 3 个月免费学习答疑…



课程网址: http://www.edatop.com/peixun/cst/24.html



#### HFSS 天线设计培训课程套装

套装包含 6 门视频课程和 1 本图书,课程从基础讲起,内容由浅入深, 理论介绍和实际操作讲解相结合,全面系统的讲解了 HFSS 天线设计的 全过程。是国内最全面、最专业的 HFSS 天线设计课程,可以帮助您快 速学习掌握如何使用 HFSS 设计天线,让天线设计不再难…

课程网址: http://www.edatop.com/peixun/hfss/122.html

#### 13.56MHz NFC/RFID 线圈天线设计培训课程套装

套装包含 4 门视频培训课程,培训将 13.56MHz 线圈天线设计原理和仿 真设计实践相结合,全面系统地讲解了 13.56MHz 线圈天线的工作原理、 设计方法、设计考量以及使用 HFSS 和 CST 仿真分析线圈天线的具体 操作,同时还介绍了 13.56MHz 线圈天线匹配电路的设计和调试。通过 该套课程的学习,可以帮助您快速学习掌握 13.56MHz 线圈天线及其匹 配电路的原理、设计和调试…



详情浏览: http://www.edatop.com/peixun/antenna/116.html

#### 我们的课程优势:

- ※ 成立于 2004 年, 10 多年丰富的行业经验,
- ※ 一直致力并专注于微波射频和天线设计工程师的培养,更了解该行业对人才的要求
- ※ 经验丰富的一线资深工程师讲授,结合实际工程案例,直观、实用、易学

### 联系我们:

- ※ 易迪拓培训官网: http://www.edatop.com
- ※ 微波 EDA 网: http://www.mweda.com
- ※ 官方淘宝店: http://shop36920890.taobao.com

专注于微波、射频、大线设计人才的培养 **房迪拓培训** 官方网址: http://www.edatop.com

淘宝网店:http://shop36920890.taobao.cor